Problem 2

Evaluate

$$
\int \frac{1}{x^{7}-x} d x
$$

The straightforward approach would be to start with partial fractions, but that would be brutal. Try a substitution.

Solution

Following the suggestion, we will look for a substitution. Factor out x from the denominator.

$$
\int \frac{1}{x\left(x^{6}-1\right)} d x
$$

Make the following u-substitution.

$$
\begin{aligned}
u & =x^{6}-1 & & \rightarrow & u+1=x^{6} \\
d u & =6 x^{5} d x & & \rightarrow & \frac{d u}{6 x^{5}}=d x
\end{aligned}
$$

Then the integral becomes

$$
\int \frac{1}{x u} \frac{d u}{6 x^{5}} .
$$

Bring the constant out in front and combine the x-terms.

$$
\frac{1}{6} \int \frac{1}{u x^{6}} d u
$$

Substitute the expression for x^{6}.

$$
\frac{1}{6} \int \frac{1}{u(u+1)} d u
$$

Split up the integrand with partial fraction decomposition.

$$
\frac{1}{u(u+1)}=\frac{A}{u}+\frac{B}{u+1}
$$

Multiply both sides by the least common denominator.

$$
1=A(u+1)+B u
$$

As we have two unknowns, A and B, choose two random values of u to get two equations to solve for them.

$$
\begin{array}{ll}
u=0: & 1=A(1) \\
u=1: & 1=A(2)+B
\end{array}
$$

Solving the system yields $A=1$ and $B=-1$, so we have the following for the integral.

$$
\frac{1}{6} \int\left(\frac{1}{u}-\frac{1}{u+1}\right) d u
$$

Split up the integral into two.

$$
\frac{1}{6}\left(\int \frac{1}{u} d u-\int \frac{1}{u+1} d u\right)
$$

Now integrate the two functions.

$$
\frac{1}{6}(\ln |u|-\ln |u+1|)+C
$$

where C is an arbitrary constant. Since the integral we have to solve is in terms of x, that's what the final answer should be in terms of.

$$
\frac{1}{6} \ln \left|x^{6}-1\right|-\frac{1}{6} \ln \left|x^{6}\right|+C
$$

Therefore,

$$
\int \frac{1}{x^{7}-x} d x=\frac{1}{6} \ln \left|x^{6}-1\right|-\ln |x|+C .
$$

